山西省的网站,创作者计划,课程培训网站模板下载,装饰工程预算与报价引言
高并发背景
互联网行业迅速发展#xff0c;用户量剧增#xff0c;系统面临巨大的并发请求压力。
软件系统有三个追求#xff1a;高性能、高并发、高可用#xff0c;俗称三高。三者既有区别也有联系#xff0c;门门道道很多#xff0c;全面讨论需要三天三夜#…引言
高并发背景
互联网行业迅速发展用户量剧增系统面临巨大的并发请求压力。
软件系统有三个追求高性能、高并发、高可用俗称三高。三者既有区别也有联系门门道道很多全面讨论需要三天三夜本篇讨论高并发
高并发对系统的挑战
性能下降、资源竞争和稳定性问题等
什么是高并发
高并发的定义
高并发是指系统或应用程序在同一时间段内接收到大量并发请求的能力。具体来说高并发环境下系统需要能够同时处理大量的请求而不会出现性能问题或响应延迟
高并发的特点
大量请求高并发场景下系统需要同时处理大量的请求这些请求可能来自于不同的用户或客户端。同时访问这些请求几乎同时到达系统需要在短时间内进行处理和响应。资源竞争由于大量请求同时到达系统的资源如CPU、内存、网络带宽等可能会面临竞争和争夺。响应时间要求高高并发场景通常对系统的响应速度有较高的要求用户期望能够快速获取响应结果
高并发场景和应用
高并发场景广泛应用于热门网站、电商平台、社交媒体等互联网应用中。例如在电商平台上有大量用户同时浏览、搜索商品提交订单等操作社交媒体平台上有大量用户同时发布、点赞、评论等操作。这些场景需要系统能够同时处理大量请求并保证系统的性能、可用性和用户体验
高并发的影响
系统性能的下降和延迟增加资源竞争和资源耗尽系统稳定性和可用性的挑战
高并发应对策略
缓存缓解系统负载压力提高系统响应速度限流控制并发访问量保护系统免受过载影响降级保证核心功能的稳定性舍弃非关键业务或简化处理
缓存
简介
在网站或APP的开发中缓存机制是一个不可或缺的环节可以提高网站或APP的访问速度降低数据库压力。但在高并发环境下缓存机制的作用更加明显不仅可以有效减轻数据库的负载还可以提高系统的稳定性和性能从而给用户带来更好的体验
工作原理
缓存的工作原理是先从缓存中获取数据如果有数据则直接返回给用户如果没有数据则从慢速设备上读取实际数据并且将数据放入缓存。
常用技术
浏览器缓存
简介
浏览器缓存是指将网页中的资源如HTML、CSS、JavaScript、图像等存储在用户的浏览器内部以便在后续请求同一资源时可以直接从本地缓存中获取而无需再次从服务器下载
适用场景
浏览器缓存适用于那些静态内容变化较少的网页和静态资源可以显著提升网站性能和用户体验并减少服务器的负载
常见用法
使用浏览器缓存可以通过设置响应头中的Expires和Cache-Control字段来控制缓存的行为。
使用Expires字段Expires字段指定了缓存的过期时间是一个具体的日期和时间。服务器可以在响应头中添加Expires字段告诉浏览器在该时间之前可以直接从缓存中获取资源而无需再向服务器发起请求。例如Expires: Mon, 31 Dec 2022 23:59:59 GMT。使用Cache-Control字段Cache-Control字段提供了更灵活的缓存控制选项。可以通过设置max-age指令来指定缓存的最大有效时间单位是秒。例如Cache-Control: max-age3600 表示资源可以在1小时内直接从缓存中获取。还可以使用其他指令如no-cache表示缓存但不使用缓存、no-store表示禁止缓存等。
注意事项
浏览器缓存存储实时性不敏感的数据如商品框架、商家评分、评价和广告词。它有过期时间并通过响应头进行控制。实时性要求高的数据不适合使用浏览器缓存
客户端缓存
简介
客户端缓存是将数据存储在浏览器中以提高访问速度和减少服务器请求
适用场景
在大促期间为了防止服务端承受瞬间的高流量压力可以提前将一些素材如js/css/image等下发到客户端进行缓存避免在大促期间再次请求这些素材。此外还可以将一些兜底数据或样式文件存放在客户端缓存中以确保在服务端异常或网络异常的情况下保持app的正常运行。
CDN缓存
简介
CDNContent Delivery Network是建立在承载网之上的分布式网络由分布在不同区域的边缘节点服务器组成。
CDN缓存通常用于存放静态页面数据、活动页面、图片等数据。它有两种缓存机制推送机制将数据主动推送到CDN节点和拉取机制首次访问时从源服务器获取数据并存储在CDN节点。 适用场景
CDN缓存可以提高网站访问速度适用于网站访问量大、访问速度慢、数据变化不频繁的场景
常用工具以及用法
常见的CDN缓存工具包括Cloudflare、Akamai、Fastly和AWS CloudFront等。这些工具提供了全球分布的CDN网络以加速内容传输和提升性能。它们提供了控制台和API用于配置CDN缓存规则、管理缓存内容、刷新和更新缓存等
反向代理缓存
简介
反向代理缓存是指在反向代理服务器上对请求的响应进行缓存以提高服务的性能和用户体验。它将经常请求的静态内容缓存在代理服务器上当有用户请求同样的内容时代理服务器会直接返回缓存的响应而无需再次向源服务器请求
适用场景
适用于访问外部服务速度比较慢但是数据变化不频繁的场景。
常用工具以及用法
Nginx一款高性能的反向代理服务器支持反向代理缓存功能可通过配置文件进行缓存策略的设置。Nginx代理层缓存主要以Http模块与proxy_cacahe模块进行配置即可。Varnish一个专门用于反向代理缓存的开源软件可以高效地缓存并提供快速的响应。Squid一款功能强大的缓存代理服务器支持反向代理缓存和正向代理缓存。
本地缓存
简介
本地缓存是将数据或资源存储在客户端的存储介质中如硬盘、内存或数据库。它可以是临时的只在应用程序运行期间有效或者可以是持久的即在不同的应用程序会话中保持有效
适用场景
本地缓存适用于频繁访问数据、离线访问、减少带宽消耗和提升用户体验的场景。
常用工具以及用法
一般分为磁盘缓存、CPU缓存、应用缓存
磁盘缓存存储在硬盘等永久性存储介质上用于加速数据的读取和访问。CPU缓存位于处理器内部的高速存储器用于暂时存储频繁访问的数据或指令提高计算机的性能。应用缓存存储在内存中的应用程序数据或资源用于提高应用程序的响应速度和用户体验。用Java服务来举例又分为 堆内缓存 与 堆外缓存 。
分布式缓存
简介
分布式缓存是将缓存数据分散存储在多台服务器上的缓存解决方案
适用场景
高并发读取、数据共享和协同处理、提供弹性和可扩展性、降低后端请求次数等场景
常用工具以及用法
RedisRedis是一种高性能的键值存储系统支持丰富的数据类型和灵活的缓存策略。可以使用Redis搭建分布式缓存集群利用其快速的读写能力和一致性哈希算法实现数据分片和负载均衡。MemcachedMemcached是一种简单而快速的分布式内存对象缓存系统用于减轻数据库负载和加速动态Web应用程序。它采用分布哈希算法进行数据分片和分布式存储。HazelcastHazelcast是一个开源的分布式内存数据网格平台提供分布式缓存和分布式计算能力。它可以用于构建高吞吐量和高可用性的分布式缓存系统。
缓存问题
缓存穿透
缓存穿透是指数据库和缓存都没有的数据每次都要经过缓存去访问数据库大量的请求有可能导致DB宕机。强调都没有数据并发访问
缓存击穿
缓存击穿是指数据库有缓存没有的数据大量请求访问这个缓存不存在的数据最后请求打到DB可能导致DB宕机。强调单个Key过期并发访问
缓存雪崩
缓存雪崩是指数据库有缓存没有的数据大量请求访问这些缓存不存在的数据最后请求打到DB可能导致DB宕机。强调批量Key过期并发访问
缓存一致性
缓存一致性指的是缓存与DB之间的数据一致性我们需要通过各种手段来防止缓存与DB不一致我们要保证缓存与DB的数据一致或者数据最终一致。
其他
缓存的好处我们非常受益用户的每一次请求都伴随着无数缓存的诞生但是缓存同时也给我们带来了不小的挑战比如在上面提到的一些疑难课题缓存穿透、缓存击穿、缓存雪崩和缓存一致性。
除此之外我们还会涉及到其他的一些缓存难题如缓存倾斜、缓存阻塞、缓存慢查询、缓存主从一致性问题、缓存高可用、缓存故障发现与故障恢复、集群扩容收缩、大Key热Key......
小结
缓存类型介绍解决方案/工具优点缺点适用场景浏览器缓存存储在用户设备上的缓存用于存储静态资源和页面内容。通过设置HTTP头中的缓存相关字段来控制缓存行为。- 快速响应避免频繁访问服务器或网络 - 减少网络带宽消耗提升网站性能- 缓存数据可能不是最新的需要考虑缓存一致性和更新机制的设计 - 缓存命中率受限于缓存容量和缓存策略的选择- 静态资源的缓存 - 减少网络带宽消耗客户端缓存应用程序在用户设备上的缓存用于存储数据、计算结果或其他业务相关的内容。使用本地存储、SessionStorage、LocalStorage或IndexedDB等Web API来进行数据的存储和读取。- 减轻后端负载提升系统性能 - 快速响应避免频繁访问服务器或网络资源- 缓存数据可能不是最新的需要考虑缓存一致性和更新机制的设计 - 缓存命中率受限于缓存容量和缓存策略的选择- 频繁访问的数据或计算结果 - 减轻后端负载CDN缓存内容分发网络的缓存用于存储和加速静态资源的分发。部署静态资源到CDN服务器并配置CDN缓存策略用户请求将被转发到就近的CDN节点加速内容的分发和访问。- 加速静态资源的访问速度提升用户体验 - 减轻源服务器负载提高系统可扩展性- 只适用于静态资源的缓存动态内容无法缓存 - CDN配置和管理的复杂性- 静态资源的分发和访问 - 加速静态资源的加载和访问反向代理缓存位于服务器前端的缓存用于缓存和加速动态内容和静态资源的访问。配置反向代理服务器并设置缓存策略将用户请求转发到缓存服务器减轻后端服务器的负载并加速内容的访问。- 加速内容的访问速度提升用户体验 - 减轻源服务器负载提高系统可扩展性- 只适用于特定的Web服务器和应用程序- 动态内容和静态资源的缓存和加速访问 - 减轻后端服务器的负载本地缓存应用程序在用户设备上的缓存用于缓存数据和资源以提高应用的性能和响应速度。使用缓存库或框架如localStorage、sessionStorage、Workbox等来实现本地缓存功能。- 提升应用的性能和响应速度 - 减少对远程资源的依赖提高离线使用体验- 本地缓存容量受限于用户设备的存储空间- 频繁访问的数据或资源 - 提升应用的性能和响应速度分布式缓存在分布式系统中使用的缓存用于存储和共享数据。分布式缓存通常部署在多台服务器上并提供高并发读写能力和数据访问的可扩展性。分布式缓存常用于大规模应用和系统中。使用分布式缓存系统如Redis、Memcached等来存储和访问缓存数据。- 高并发读写能力和数据存储的可扩展性- 需要额外的服务器资源来部署和管理分布式缓存系统 - 缓存一致性和数据同步问题需要考虑- 高并发读写能力和数据存储的可扩展性 - 大规模应用和系统的缓存和数据共享
以上是对浏览器缓存、客户端缓存、CDN缓存、反向代理缓存、本地缓存和分布式缓存的横向对比包括介绍、解决方案/工具、优点和缺点以及适用场景的详细信息。根据具体需求和系统架构选择适合的缓存类型和方案以提高系统性能、减轻服务器负载、改善用户体验和保证数据一致性。
限流
简介
再强大的系统也怕流量短事件内集中爆发就像银行怕挤兑一样所以高并发另一个必不可少的模块就是限流。
限流是一种通过控制请求的速率或数量来保护系统免受过载的技术。流控的精髓是限制单位时间内的请求量最大程度保障系统的可靠性及可用性
作用
限流是在高并发环境下为了保护系统的稳定性和可用性而引入的一种策略。通过限制并发请求的数量或频率可以防止系统被过多的请求压垮或耗尽资源
限流算法
常见的流控算法包括固定窗口、滑动窗口、漏桶、令牌桶、滑动日志等算法
固定窗口算法计数器
简介
固定窗口限流算法Fixed Window Rate Limiting Algorithm是一种最简单的限流算法其原理是在固定时间窗口(单位时间)内限制请求的数量
原理
固定窗口是最简单的流控算法。即给定时间窗口维护一个计数器用于统计访问次数并实现以下规则
如果访问次数小于阈值则允许访问访问次数1如果访问次数超出阈值则限制访问访问次数不增如果超过了时间窗口计数器清零并重置清零后的首次成功访问时间为当前时间。
适用场景
保护后端服务免受大流量冲击避免服务崩溃。对 API 调用进行限制保证公平使用。防止恶意用户对服务进行洪水攻击
实现方式
public static Integer counter 0; //统计请求数
public static long lastAcquireTime 0L;
public static final Long windowUnit 1000L ; //假设固定时间窗口是1000ms
public static final Integer threshold 10; // 窗口阀值是10
/*** 固定窗口时间算法*/public synchronized boolean fixedWindowsTryAcquire() {long currentTime System.currentTimeMillis(); //获取系统当前时间if (currentTime - lastAcquireTime windowUnit) { //检查是否在时间窗口内counter 0; // 计数器清0lastAcquireTime currentTime; //开启新的时间窗口}if (counter threshold) { // 小于阀值counter; //计数统计器加1return true;}return false;} 优劣分析
优点 固定窗口算法非常简单易于实现和理解。性能高
缺点 存在明显的临界问题 eg: 比如: 假设限流阀值为5个请求单位时间窗口是1s如果我们在单位时间内的前0.8-1s和1-1.2s分别并发5个请求。虽然都没有超过阀值但是如果算0.8-1.2s内的则并发数高达10已经超过单位时间1s不超过5阀值的定义了。 滑动窗口算法
简介
为了解决临界突变问题可以引入滑动窗口。即把大的时间窗口拆分成若干粒度更细的子窗口每个子窗口独立统计按子窗口时间滑动统一限流。
当滑动窗口的格子周期划分的越多那么滑动窗口的滚动就越平滑限流的统计就会越精确。
原理
将单位时间周期分为n个小周期分别记录每个小周期内接口的访问次数并且根据时间滑动删除过期的小周期。它可以解决固定窗口临界值的问题 假设单位时间还是1s滑动窗口算法把它划分为5个小周期也就是滑动窗口单位时间被划分为5个小格子。每格表示0.2s。每过0.2s时间窗口就会往右滑动一格。然后呢每个小周期都有自己独立的计数器如果请求是0.83s到达的0.8~1.0s对应的计数器就会加1。
假设我们1s内的限流阀值还是5个请求0.8~1.0s内比如0.9s的时候来了5个请求落在黄色格子里。 时间过了1.0s这个点之后又来5个请求落在紫色格子里。如果是固定窗口算法是不会被限流的但是滑动窗口的话每过一个小周期它会右移一个小格。过了1.0s这个点后会右移一小格当前的单位时间段是0.2~1.2s这个区域的请求已经超过限定的5了已触发限流啦实际上紫色格子的请求都被拒绝
实现方式
/*** 单位时间划分的小周期单位时间是1分钟10s一个小格子窗口一共6个格子*/
private int SUB_CYCLE 10;/*** 每分钟限流请求数*/
private int thresholdPerMin 100;/*** 计数器, k-为当前窗口的开始时间值秒value为当前窗口的计数*/
private final TreeMapLong, Integer counters new TreeMap();/*** 滑动窗口时间算法实现*/public synchronized boolean slidingWindowsTryAcquire() {long currentWindowTime LocalDateTime.now().toEpochSecond(ZoneOffset.UTC) / SUB_CYCLE * SUB_CYCLE; //获取当前时间在哪个小周期窗口int currentWindowNum countCurrentWindow(currentWindowTime); //当前窗口总请求数//超过阀值限流if (currentWindowNum thresholdPerMin) {return false;}//计数器1counters.get(currentWindowTime);return true;
}/**
* 统计当前窗口的请求数
*/
private int countCurrentWindow(long currentWindowTime) {//计算窗口开始位置long startTime currentWindowTime - SUB_CYCLE* (60s/SUB_CYCLE-1);int count 0;//遍历存储的计数器IteratorMap.EntryLong, Integer iterator counters.entrySet().iterator();while (iterator.hasNext()) {Map.EntryLong, Integer entry iterator.next();// 删除无效过期的子窗口计数器if (entry.getKey() startTime) {iterator.remove();} else {//累加当前窗口的所有计数器之和count count entry.getValue();}}return count;
}
适用场景
同固定窗口的场景且对流量限制要求较高的场景需要更好地应对突发流量。
优劣分析
优势 简单易懂精度高通过调整时间窗口的大小来实现不同的限流效果可扩展性强可以非常容易地与其他限流算法结合使用
劣质 突发流量无法处理无法应对短时间内的大量请求但是一旦到达限流后请求都会直接暴力被拒绝。这样我们会损失一部分请求这其实对于产品来说并不太友好需要合理调整时间窗口大小
漏桶算法
简介
基于出口流速来做流控。在网络通信中常用于流量整形可以很好地解决平滑度问题
特点
可以以任意速率流入水滴到漏桶流入请求漏桶具有固定容量出水速率是固定常量流出请求如果流入水滴超出了桶的容量则流入的水滴溢出新请求被拒绝
原理
思想
将数据包看作是水滴漏桶看作是一个固定容量的水桶数据包像水滴一样从桶的顶部流入桶中并通过桶底的一个小孔以一定的速度流出从而限制了数据包的流量
工作原理
对于每个到来的数据包都将其加入到漏桶中并检查漏桶中当前的水量是否超过了漏桶的容量。 如果超过了容量就将多余的数据包丢弃。如果漏桶中还有水就以一定的速率从桶底输出数据包保证输出的速率不超过预设的速率从而达到限流的目的。 代码实现 /*** LeakyBucket 类表示一个漏桶,* 包含了桶的容量和漏桶出水速率等参数* 以及当前桶中的水量和上次漏水时间戳等状态。*/
public class LeakyBucket {private final long capacity; // 桶的容量private final long rate; // 漏桶出水速率private long water; // 当前桶中的水量private long lastLeakTimestamp; // 上次漏水时间戳public LeakyBucket(long capacity, long rate) {this.capacity capacity;this.rate rate;this.water 0;this.lastLeakTimestamp System.currentTimeMillis();}/*** tryConsume() 方法用于尝试向桶中放入一定量的水如果桶中还有足够的空间则返回 true否则返回 false。*/public synchronized boolean tryConsume(long waterRequested) {leak();if (water waterRequested capacity) {water waterRequested;return true;} else {return false;}}/*** leak() 方法用于漏水根据当前时间和上次漏水时间戳计算出应该漏出的水量然后更新桶中的水量和漏水时间戳等状态。*/private void leak() {long now System.currentTimeMillis();long elapsedTime now - lastLeakTimestamp;long leakedWater elapsedTime * rate / 1000;if (leakedWater 0) {water Math.max(0, water - leakedWater);lastLeakTimestamp now;}}
}
注意: tryConsume() 和 leak() 方法中都需要对桶的状态进行同步以保证线程安全性。
适用场景
一般用于保护第三方的系统比如自身的系统需要调用第三方的接口为了保护第三方的系统不被自身的调用打垮便可以通过漏斗算法进行限流保证自身的流量平稳的打到第三方的接口上
优劣分析
优势 可以平滑限制请求的处理速度避免瞬间请求过多导致系统崩溃或者雪崩。可以控制请求的处理速度使得系统可以适应不同的流量需求避免过载或者过度闲置。可以通过调整桶的大小和漏出速率来满足不同的限流需求可以灵活地适应不同的场景。
劣质 需要对请求进行缓存会增加服务器的内存消耗。对于流量波动比较大的场景需要较为灵活的参数配置才能达到较好的效果。但是面对突发流量的时候漏桶算法还是循规蹈矩地处理请求这不是我们想看到的啦。流量变突发时我们肯定希望系统尽量快点处理请求提升用户体验嘛。
令牌桶算法
简介
基于入口流速来做流控的一种限流算法
原理
该算法维护一个固定容量的令牌桶每秒钟会向令牌桶中放入一定数量的令牌。当有请求到来时如果令牌桶中有足够的令牌则请求被允许通过并从令牌桶中消耗一个令牌否则请求被拒绝。 实现方式
/*** TokenBucket 类表示一个令牌桶*/
public class TokenBucket {private final int capacity; // 令牌桶容量private final int rate; // 令牌生成速率单位令牌/秒private int tokens; // 当前令牌数量private long lastRefillTimestamp; // 上次令牌生成时间戳/*** 构造函数中传入令牌桶的容量和令牌生成速率。*/public TokenBucket(int capacity, int rate) {this.capacity capacity;this.rate rate;this.tokens capacity;this.lastRefillTimestamp System.currentTimeMillis();}/*** allowRequest() 方法表示一个请求是否允许通过该方法使用 synchronized 关键字进行同步以保证线程安全。*/public synchronized boolean allowRequest() {refill();if (tokens 0) {tokens--;return true;} else {return false;}}/*** refill() 方法用于生成令牌其中计算令牌数量的逻辑是按照令牌生成速率每秒钟生成一定数量的令牌* tokens 变量表示当前令牌数量* lastRefillTimestamp 变量表示上次令牌生成的时间戳。*/private void refill() {long now System.currentTimeMillis();if (now lastRefillTimestamp) {int generatedTokens (int) ((now - lastRefillTimestamp) / 1000 * rate);tokens Math.min(tokens generatedTokens, capacity);lastRefillTimestamp now;}}
}Guava的RateLimiter限流组件就是基于令牌桶算法实现的。
适用场景
一般用于保护自身的系统对调用者进行限流保护自身的系统不被突发的流量打垮。如果自身的系统实际的处理能力强于配置的流量限制时可以允许一定程度的流量突发使得实际的处理速率高于配置的速率充分利用系统资源
优劣分析
优势 稳定性高令牌桶算法可以控制请求的处理速度可以使系统的负载变得稳定。精度高令牌桶算法可以根据实际情况动态调整生成令牌的速率可以实现较高精度的限流。弹性好令牌桶算法可以处理突发流量可以在短时间内提供更多的处理能力以处理突发流量。
劣质 实现复杂相对于固定窗口算法等其他限流算法令牌桶算法的实现较为复杂。对短时请求难以处理在短时间内有大量请求到来时可能会导致令牌桶中的令牌被快速消耗完从而限流。这种情况下可以考虑使用漏桶算法。时间精度要求高令牌桶算法需要在固定的时间间隔内生成令牌因此要求时间精度较高如果系统时间不准确可能会导致限流效果不理想。
滑动日志算法比较冷门
简介
滑动日志限速算法需要记录请求的时间戳通常使用有序集合来存储我们可以在单个有序集合中跟踪用户在一个时间段内所有的请求。
原理 实现方式
Copypublic class SlidingLogRateLimiter extends MyRateLimiter {/*** 每分钟限制请求数*/private static final long PERMITS_PER_MINUTE 60;/*** 请求日志计数器, k-为请求的时间秒value当前时间的请求数量*/private final TreeMapLong, Integer requestLogCountMap new TreeMap();
Overridepublic synchronized boolean tryAcquire() {// 最小时间粒度为slong currentTimestamp LocalDateTime.now().toEpochSecond(ZoneOffset.UTC);// 获取当前窗口的请求总数int currentWindowCount getCurrentWindowCount(currentTimestamp);if (currentWindowCount PERMITS_PER_MINUTE) {return false;}// 请求成功将当前请求日志加入到日志中requestLogCountMap.merge(currentTimestamp, 1, Integer::sum);return true;}
/*** 统计当前时间窗口内的请求数** param currentTime 当前时间* return -*/private int getCurrentWindowCount(long currentTime) {// 计算出窗口的开始位置时间long startTime currentTime - 59;// 遍历当前存储的计数器删除无效的子窗口计数器并累加当前窗口中的所有计数器之和return requestLogCountMap.entrySet().stream().filter(entry - entry.getKey() startTime).mapToInt(Map.Entry::getValue).sum();}
}适用场景 优劣分析
优势 滑动日志能够避免突发流量实现较为精准的限流更加灵活能够支持更加复杂的限流策略 如多级限流每分钟不超过100次每小时不超过300次每天不超过1000次我们只需要保存最近24小时所有的请求日志即可实现。劣质占用存储空间要高于其他限流算法 几种算法小结
固定窗口算法实现简单性能高但是会有临界突发流量问题瞬时流量最大可以达到阈值的2倍。 为了解决临界突发流量可以将窗口划分为多个更细粒度的单元每次窗口向右移动一个单元于是便有了滑动窗口算法。 滑动窗口当流量到达阈值时会瞬间掐断流量所以导致流量不够平滑。 想要达到限流的目的又不会掐断流量使得流量更加平滑可以考虑漏桶算法需要注意的是漏桶算法通常配置一个FIFO的队列使用以达到允许限流的作用。 由于速率固定即使在某个时刻下游处理能力过剩也不能得到很好的利用这是漏桶算法的一个短板。 限流和瞬时流量其实并不矛盾在大多数场景中短时间突发流量系统是完全可以接受的。令牌桶算法就是不二之选了令牌桶以固定的速率v产生令牌放入一个固定容量为n的桶中当请求到达时尝试从桶中获取令牌。 当桶满时允许最大瞬时流量为n当桶中没有剩余流量时则限流速率最低为令牌生成的速率v。 如何实现更加灵活的多级限流呢滑动日志限流算法了解一下这里的日志则是请求的时间戳通过计算制定时间段内请求总数来实现灵活的限流。 当然由于需要存储时间戳信息其占用的存储空间要比其他限流算法要大得多。 以上几种限流算法的实现都仅适合单机限流。虽然给每台机器平均分配限流配额可以达到限流的目的但是由于机器性能流量分布不均以及计算数量动态变化等问题单机限流在分布式场景中的效果总是差强人意。 分布式限流最简单的实现就是利用中心化存储即将单机限流存储在本地的数据存储到同一个存储空间中如常见的Redis等。
常用工具
RateLimiter
基于令牌桶算法实现的一个多线程限流器它可以将请求均匀的进行处理当然他并不是一个分布式限流器只是对单机进行限流。它可以应用在定时拉取接口数。 通过aop、filter、Interceptor 等都可以达到限流效果
sentinel
Hystrix
Nginx
简介
Nginx从网关这一层面考虑可以作为最前置的网关抵挡大部分的网络流量因此使用Nginx进行限流也是一个很好的选择在Nginx中也提供了常用的基于限流相关的策略配置.
用法
Nginx 提供了两种限流方法一种是控制速率另一种是控制并发连接数。
控制速率
我们需要使用 limit_req_zone 用来限制单位时间内的请求数即速率限制
因为Nginx的限流统计是基于毫秒的我们设置的速度是 2r/s转换一下就是500毫秒内单个IP只允许通过1个请求从501ms开始才允许通过第2个请求。
控制速率优化版
上面的速率控制虽然很精准但是在生产环境未免太苛刻了实际情况下我们应该控制一个IP单位总时间内的总访问次数而不是像上面那样精确到毫秒我们可以使用 burst 关键字开启此设置
burst4意思是每个IP最多允许4个突发请求
控制并发数
利用 limit_conn_zone 和 limit_conn 两个指令即可控制并发数
其中 limit_conn perip 10 表示限制单个 IP 同时最多能持有 10 个连接limit_conn perserver 100 表示 server 同时能处理并发连接的总数为 100 个。
注意只有当 request header 被后端处理后这个连接才进行计数。 降级
简介
降级是在高并发或异常情况下舍弃非关键业务或简化处理的一种技术手段
按类型可分为有感降级无感降级
有感降级
主要是通过一定的监控感知到异常出现或即将出现对调用服务进行快速失败返回或者进行切换在指标回正的时候恢复服务调用这个也可以称为熔断。
无感降级
系统不作感知在调用服务出现异常则自动忽略进行空返回或无操作。降级的本质为作为服务调用方去规避提供方带来的风险。
原理
在限流中服务调用方为每一个调用的服务维护一个有限状态机在这个状态机会有三种状态关闭调用远程服务、半打开尝试调用远程服务和打开返回错误。这三种状态之间切换的过程如下 当调用失败的次数累积到一定的阈值时熔断机制从关闭态切换到打开态。一般在实现时如果调用成功一次就会重置调用失败次数
当熔断处于打开状态时我们会启动一个计时器当计时器超时后状态切换到半打开态。也可以通过设置一个定时器定期的探测服务是否恢复
当熔断处于半打开状态时请求可以达到后端服务如果累计一定的成功次数后状态切换到关闭态如果出现调用失败的情况则切换到打开态 常用工具
降级开源组件sentinel和Hystrix(不展开)手动降级可采用系统配置开关来控制
其他
熔断
简介
熔断在程序中表示“断开”的意思。如发生了某事件程序为了整体的稳定性所以暂时断开停止服务一段时间以保证程序可用时再被使用。
熔断和降级的区别
概念不同 熔断程序为了整体的稳定性所以暂时断开停止服务一段时间降级Degradation降低级别的意思它是指程序在出现问题时仍能保证有限功能可用的一种机制触发条件不同 不同框架的熔断和降级的触发条件是不同以Hystrix为例 Hystrix 熔断触发条件
默认情况 hystrix 如果检测到 10 秒内请求的失败率超过 50%就触发熔断机制。之后每隔 5 秒重新尝试请求微服务如果微服务不能响应继续走熔断机制。如果微服务可达则关闭熔断机制恢复正常请求。 * Hystrix 降级触发条件
默认情况下hystrix 在以下 4 种条件下都会触发降级机制
方法抛出 HystrixBadRequestException方法调用超时熔断器开启拦截调用线程池或队列或信号量已满
归属关系不同熔断时可能会调用降级机制而降级时通常不会调用熔断机制。因为熔断是从全局出发为了保证系统稳定性而停用服务而降级是退而求其次提供一种保底的解决方案所以它们的归属关系是不同熔断 降级
小结
缓存、限流和降级是应对高并发的三大利器能够提升系统性能、保护资源和保证核心功能。组合使用缓存、限流和降级策略根据具体场景灵活调整和优化。在高并发环境下综合使用三大利器是应对挑战的有效策略。 附录
常见的几种限流算法常用限流算法与应用场景