当前位置: 首页 > news >正文

南京哪家做网站好做冷库用什么网站发帖子好

南京哪家做网站好,做冷库用什么网站发帖子好,建筑木工模板包工价格,中企z云邮企业邮箱登录文章目录 简单回顾线性规划LP整数规划IP0-1规划 简单回顾 线性规划是数学规划中的一类最简单规划问题#xff0c;常见的线性规划是一个有约束的#xff0c;变量范围为有理数的线性规划。如#xff1a; 使用matlab的linprog函数即可求解简单的线性规划问题#xff0c;可以参… 文章目录 简单回顾线性规划LP整数规划IP0-1规划 简单回顾 线性规划是数学规划中的一类最简单规划问题常见的线性规划是一个有约束的变量范围为有理数的线性规划。如 使用matlab的linprog函数即可求解简单的线性规划问题可以参考这篇博客 MATLAB求解线性规划含整数规划和0-1规划问题 matlab求解线性规划LP问题需要化为最小化问题所有约束条件必须为≤类型限制较多。本文介绍使用pythongurobi进行求解。 pythongurobi介绍参考这篇博客 gurobi最新下载安装教程 2023.11 线性规划LP import gurobipy from gurobipy import GRB# 创建模型 c [7, 12] a [[9, 4],[4, 5],[3, 10]] b [300, 200, 300] MODEL gurobipy.Model(Example)# 创建变量 x MODEL.addVars(2, lb0, ubgurobipy.GRB.INFINITY, namex)# 更新变量环境 MODEL.update()# 创建目标函数 MODEL.setObjective(x.prod(c), gurobipy.GRB.MAXIMIZE)# 创建约束条件 MODEL.addConstrs(x.prod(a[i]) b[i] for i in range(3))# 执行线性规划模型 MODEL.optimize() print(Obj:, MODEL.objVal) for v in MODEL.getVars():print(f{v.VarName}{round(v.X,3)}) Gurobi Optimizer version 10.0.3 build v10.0.3rc0 (win64)CPU model: Intel(R) Core(TM) i7-8565U CPU 1.80GHz, instruction set [SSE2|AVX|AVX2] Thread count: 4 physical cores, 8 logical processors, using up to 8 threadsOptimize a model with 3 rows, 2 columns and 6 nonzeros Model fingerprint: 0x6b25b35d Coefficient statistics:Matrix range [3e00, 1e01]Objective range [7e00, 1e01]Bounds range [0e00, 0e00]RHS range [2e02, 3e02] Presolve time: 0.01s Presolved: 3 rows, 2 columns, 6 nonzerosIteration Objective Primal Inf. Dual Inf. Time0 3.2500000e30 2.812500e30 3.250000e00 0s2 4.2800000e02 0.000000e00 0.000000e00 0sSolved in 2 iterations and 0.01 seconds (0.00 work units) Optimal objective 4.280000000e02 Obj: 428.0 x[0]20.0 x[1]24.0最终可得最优解为x 20, y 24, 最优值为428。 gurobi对最大化问题、最小化问题大于等于和小于等于约束都支持。 整数规划IP import gurobipy from gurobipy import GRB import numpy as np# 创建模型 c [3, 2] a [[2, 3],[4, 2]] b [14, 18] MODEL gurobipy.Model(Example)# 创建变量 #x MODEL.addVars(2, lb0, ubgurobipy.GRB.INFINITY, namex)x1 MODEL.addVar(vtypeGRB.INTEGER,lb0,ubGRB.INFINITY, namex1) x2 MODEL.addVar(vtypeGRB.INTEGER,lb0,ubGRB.INFINITY, namex2) # 更新变量环境MODEL.update()# 创建目标函数 MODEL.setObjective(c[0]*x1c[1]*x2, gurobipy.GRB.MAXIMIZE)# 创建约束条件 for i in range(2):MODEL.addConstr(a[i][0]*x1 a[i][1]*x2 b[i])# 执行线性规划模型 MODEL.optimize() print(Obj:, MODEL.objVal) for v in MODEL.getVars():print(f{v.VarName}{round(v.X,3)})Gurobi Optimizer version 10.0.3 build v10.0.3rc0 (win64)CPU model: Intel(R) Core(TM) i7-8565U CPU 1.80GHz, instruction set [SSE2|AVX|AVX2] Thread count: 4 physical cores, 8 logical processors, using up to 8 threadsOptimize a model with 2 rows, 2 columns and 4 nonzeros Model fingerprint: 0x15a6e8bd Variable types: 0 continuous, 2 integer (0 binary) Coefficient statistics:Matrix range [2e00, 4e00]Objective range [2e00, 3e00]Bounds range [0e00, 0e00]RHS range [1e01, 2e01] Found heuristic solution: objective 14.0000000 Presolve time: 0.00s Presolved: 2 rows, 2 columns, 4 nonzeros Variable types: 0 continuous, 2 integer (0 binary)Explored 0 nodes (0 simplex iterations) in 0.00 seconds (0.00 work units) Thread count was 8 (of 8 available processors)Solution count 1: 14 Optimal solution found (tolerance 1.00e-04) Best objective 1.400000000000e01, best bound 1.400000000000e01, gap 0.0000% Obj: 14.0 x14.0 x21.0可得该整数规划问题的最优解为x1 4, x2 1,最优值为14。 如果解其对应的松弛问题 import gurobipy from gurobipy import GRB import numpy as np# 创建模型 c [3, 2] a [[2, 3],[4, 2]] b [14, 18] MODEL gurobipy.Model(Example)# 创建变量 x MODEL.addVars(2, lb0, ubgurobipy.GRB.INFINITY, namex)# 更新变量环境MODEL.update()# 创建目标函数 MODEL.setObjective(x.prod(c), gurobipy.GRB.MAXIMIZE)# 创建约束条件 MODEL.addConstrs(x.prod(a[i]) b[i] for i in range(2))# 执行线性规划模型 MODEL.optimize() print(Obj:, MODEL.objVal) for v in MODEL.getVars():print(f{v.VarName}{round(v.X,3)})Gurobi Optimizer version 10.0.3 build v10.0.3rc0 (win64)CPU model: Intel(R) Core(TM) i7-8565U CPU 1.80GHz, instruction set [SSE2|AVX|AVX2] Thread count: 4 physical cores, 8 logical processors, using up to 8 threadsOptimize a model with 2 rows, 2 columns and 4 nonzeros Model fingerprint: 0x15a42e7d Coefficient statistics:Matrix range [2e00, 4e00]Objective range [2e00, 3e00]Bounds range [0e00, 0e00]RHS range [1e01, 2e01] Presolve time: 0.01s Presolved: 2 rows, 2 columns, 4 nonzerosIteration Objective Primal Inf. Dual Inf. Time0 5.0000000e30 2.750000e30 5.000000e00 0s2 1.4750000e01 0.000000e00 0.000000e00 0sSolved in 2 iterations and 0.01 seconds (0.00 work units) Optimal objective 1.475000000e01 Obj: 14.75 x[0]3.25 x[1]2.5可以发现对应的解是x1 3.25, x2 2.5, 最优值为14.75。松弛问题的最优解总是优于整数规划问题的。 0-1规划 无论是matlab的linprog函数还是gurobi0-1规划实际上只需要在整数规划的基础上让决策变量的定义域在0-1之间即可。 仍然是上面的同一个问题 ## 0-1规划import gurobipy from gurobipy import GRB# 创建模型 c [3, 2] a [[2, 3],[4, 2]] b [14, 18] MODEL gurobipy.Model(Example)# 创建变量 #x MODEL.addVars(2, lb0, ubgurobipy.GRB.INFINITY, namex)x1 MODEL.addVar(vtypeGRB.INTEGER,lb0,ub1, namex1) x2 MODEL.addVar(vtypeGRB.INTEGER,lb0,ub1, namex2) # 更新变量环境MODEL.update()# 创建目标函数 MODEL.setObjective(c[0]*x1c[1]*x2, gurobipy.GRB.MAXIMIZE)# 创建约束条件 for i in range(2):MODEL.addConstr(a[i][0]*x1 a[i][1]*x2 b[i])# 执行线性规划模型 MODEL.optimize() print(Obj:, MODEL.objVal) for v in MODEL.getVars():print(f{v.VarName}{round(v.X,3)})Gurobi Optimizer version 10.0.3 build v10.0.3rc0 (win64)CPU model: Intel(R) Core(TM) i7-8565U CPU 1.80GHz, instruction set [SSE2|AVX|AVX2] Thread count: 4 physical cores, 8 logical processors, using up to 8 threadsOptimize a model with 3 rows, 2 columns and 6 nonzeros Model fingerprint: 0x6b25b35d Coefficient statistics:Matrix range [3e00, 1e01]Objective range [7e00, 1e01]Bounds range [0e00, 0e00]RHS range [2e02, 3e02] Presolve time: 0.01s Presolved: 3 rows, 2 columns, 6 nonzerosIteration Objective Primal Inf. Dual Inf. Time0 3.2500000e30 2.812500e30 3.250000e00 0s2 4.2800000e02 0.000000e00 0.000000e00 0sSolved in 2 iterations and 0.01 seconds (0.00 work units) Optimal objective 4.280000000e02 Obj: 428.0 x[0]20.0 x[1]24.0 Gurobi Optimizer version 10.0.3 build v10.0.3rc0 (win64)CPU model: Intel(R) Core(TM) i7-8565U CPU 1.80GHz, instruction set [SSE2|AVX|AVX2] Thread count: 4 physical cores, 8 logical processors, using up to 8 threadsOptimize a model with 3 rows, 6 columns and 18 nonzeros Model fingerprint: 0x157f6a4a Coefficient statistics:Matrix range [9e00, 6e01]Objective range [6e00, 1e01]Bounds range [0e00, 0e00]RHS range [6e01, 2e02] Presolve time: 0.01s Presolved: 3 rows, 6 columns, 18 nonzerosIteration Objective Primal Inf. Dual Inf. Time0 0.0000000e00 4.187500e01 0.000000e00 0s3 2.9842520e01 0.000000e00 0.000000e00 0sSolved in 3 iterations and 0.01 seconds (0.00 work units) Optimal objective 2.984251969e01 Obj: 29.84251968503937 x[0]0.0 x[1]0.433 x[2]0.0 x[3]4.252 x[4]0.0 x[5]0.0 Gurobi Optimizer version 10.0.3 build v10.0.3rc0 (win64)CPU model: Intel(R) Core(TM) i7-8565U CPU 1.80GHz, instruction set [SSE2|AVX|AVX2] Thread count: 4 physical cores, 8 logical processors, using up to 8 threadsOptimize a model with 2 rows, 2 columns and 4 nonzeros Model fingerprint: 0x15a6e8bd Variable types: 0 continuous, 2 integer (0 binary) Coefficient statistics:Matrix range [2e00, 4e00]Objective range [2e00, 3e00]Bounds range [0e00, 0e00]RHS range [1e01, 2e01] Found heuristic solution: objective 14.0000000 Presolve time: 0.00s Presolved: 2 rows, 2 columns, 4 nonzeros Variable types: 0 continuous, 2 integer (0 binary)Explored 0 nodes (0 simplex iterations) in 0.00 seconds (0.00 work units) Thread count was 8 (of 8 available processors)Solution count 1: 14 Optimal solution found (tolerance 1.00e-04) Best objective 1.400000000000e01, best bound 1.400000000000e01, gap 0.0000% Obj: 14.0 x14.0 x21.0 Gurobi Optimizer version 10.0.3 build v10.0.3rc0 (win64)CPU model: Intel(R) Core(TM) i7-8565U CPU 1.80GHz, instruction set [SSE2|AVX|AVX2] Thread count: 4 physical cores, 8 logical processors, using up to 8 threadsOptimize a model with 2 rows, 2 columns and 4 nonzeros Model fingerprint: 0x15a42e7d Coefficient statistics:Matrix range [2e00, 4e00]Objective range [2e00, 3e00]Bounds range [0e00, 0e00]RHS range [1e01, 2e01] Presolve time: 0.01s Presolved: 2 rows, 2 columns, 4 nonzerosIteration Objective Primal Inf. Dual Inf. Time0 5.0000000e30 2.750000e30 5.000000e00 0s2 1.4750000e01 0.000000e00 0.000000e00 0sSolved in 2 iterations and 0.01 seconds (0.00 work units) Optimal objective 1.475000000e01 Obj: 14.75 x[0]3.25 x[1]2.5 Gurobi Optimizer version 10.0.3 build v10.0.3rc0 (win64)CPU model: Intel(R) Core(TM) i7-8565U CPU 1.80GHz, instruction set [SSE2|AVX|AVX2] Thread count: 4 physical cores, 8 logical processors, using up to 8 threadsOptimize a model with 2 rows, 2 columns and 4 nonzeros Model fingerprint: 0xdff3d373 Variable types: 0 continuous, 2 integer (0 binary) Coefficient statistics:Matrix range [2e00, 4e00]Objective range [2e00, 3e00]Bounds range [1e00, 1e00]RHS range [1e01, 2e01] Found heuristic solution: objective 5.0000000Explored 0 nodes (0 simplex iterations) in 0.00 seconds (0.00 work units) Thread count was 1 (of 8 available processors)Solution count 1: 5 Optimal solution found (tolerance 1.00e-04) Best objective 5.000000000000e00, best bound 5.000000000000e00, gap 0.0000% Obj: 5.0 x11.0 x21.0可得0-1规划的最优解是x1 x2 1, 最优值 5。 当然0-1规划的典型应用场景是指派问题、运输问题、排班问题等。
http://wiki.neutronadmin.com/news/74218/

相关文章:

  • 在线制作表白网站的源码页面设计方案
  • 做网站可以申请个体户么沧州大型网站建设
  • 徐汇网站建设高端手表品牌排行榜前十名
  • 哈尔滨做企业网站山东住房和城乡建设厅网站首页
  • 大连建站公司成都网站建设方案服务
  • 单位建设网站需要招标查询网站ftp地址
  • 网站网站做代理怎么发展下线做百度企业网站有什么好处
  • 高中教学网站高端品牌网站建设在哪济南兴田德润优惠吗
  • 个人网站做淘宝客购物网站项目介绍
  • 人才网站建设报告个人怎么在百度上做推广
  • 临沂网站公众号建设建设校园网站的必要性
  • 东莞自助建站平台个人备案网站做电影站
  • 个体工商户网站备案深圳企业电话黄页
  • 广州哪里做网站网站开发自定义模块
  • 义务教育标准化建设网站选服务好的网站建设
  • 国外做机器人的网站微信公众号端网站开发
  • 开业时网站可以做哪些活动网站安全建设目的是
  • 做网站挂广告赚钱犯法吗网上自学电脑课程
  • 豪华跑车网站建设深圳网站设计公司
  • 长沙网站制作费用中文域名
  • 设计免费素材网站wordpress内置分页方法
  • 网站后台无法更新缓存青岛百度网站排名优化
  • 专业做蛋糕的网站新闻最新消息10条
  • 经典设计网站建设网站需要几个人完成
  • 做网站自己有模板要花多少钱如何用自己的电脑做网站空间
  • 综合门户网站是什么意思天猫网站建设的目标
  • wordpress 双侧边栏常见网站性能优化手段
  • 小门户网站模版营销型品牌网站建设
  • 爱站网使用的是什么网站天猫建设网站的理由
  • wap网站 链接微信公司邮箱号