河北省建设监理协会网站,wordpress禁止主题更新,汕头高端网站开发,网站开发需要多线程吗1. 什么是预训练和微调
你需要搭建一个网络模型来完成一个特定的图像分类的任务。首先#xff0c;你需要随机初始化参数#xff0c;然后开始训练网络#xff0c;不断调整参数#xff0c;直到网络的损失越来越小。在训练的过程中#xff0c;一开始初始化的参数会不断变化。…1. 什么是预训练和微调
你需要搭建一个网络模型来完成一个特定的图像分类的任务。首先你需要随机初始化参数然后开始训练网络不断调整参数直到网络的损失越来越小。在训练的过程中一开始初始化的参数会不断变化。当你觉得结果很满意的时候你就可以将训练模型的参数保存下来以便训练好的模型可以在下次执行类似任务时获得较好的结果。这个过程就是 pre-training。之后你又接收到一个类似的图像分类的任务。这时候你可以直接使用之前保存下来的模型的参数来作为这一任务的初始化参数然后在训练的过程中依据结果不断进行一些修改。这时候你使用的就是一个 pre-trained 模型而过程就是 fine-tuning。
所以预训练 就是指预先训练的一个模型或者指预先训练模型的过程微调 就是指将预训练过的模型作用于自己的数据集并使参数适应自己数据集的过程。
1.1 预训练模型
预训练模型就是已经用数据集训练好了的模型。现在我们常用的预训练模型就是他人用常用模型比如VGG16/19Resnet等模型并用大型数据集来做训练集比如Imagenet, COCO等训练好的模型参数正常情况下我们常用的VGG16/19等网络已经是他人调试好的优秀网络我们无需再修改其网络结构。 2. 预训练和微调的作用
在 CNN 领域中实际上很少人自己从头训练一个 CNN 网络。主要原因是自己很小的概率会拥有足够大的数据集基本是几百或者几千张不像 ImageNet 有 120 万张图片这样的规模。拥有的数据集不够大而又想使用很好的模型的话很容易会造成过拟合。
所以一般的操作都是在一个大型的数据集上ImageNet训练一个模型然后使用该模型作为类似任务的初始化或者特征提取器。比如 VGGResNet 等模型都提供了自己的训练参数以便人们可以拿来微调。这样既节省了时间和计算资源又能很快的达到较好的效果。
3. 模型微调 3.1 微调的四个步骤 在源数据集例如 ImageNet 数据集上预训练一个神经网络模型即源模型。 创建一个新的神经网络模型即目标模型。它复制了源模型上除了输出层外的所有模型设计及其参数。我们假设这些模型参数包含了源数据集上学习到的知识且这些知识同样适用于目标数据集。我们还假设源模型的输出层跟源数据集的标签紧密相关因此在目标模型中不予采用。 为目标模型添加一个输出大小为目标数据集类别个数的输出层并随机初始化该层的模型参数。 在目标数据集例如椅子数据集上训练目标模型。我们将从头训练输出层而其余层的参数都是基于源模型的参数微调得到的。 3.2 为什么要微调
卷积神经网络的核心是 浅层卷积层提取基础特征比如边缘轮廓等基础特征。 深层卷积层提取抽象特征比如整个脸型。 全连接层根据特征组合进行评分分类。
普通预训练模型的特点是用了大型数据集做训练已经具备了提取浅层基础特征和深层抽象特征的能力。
如果不做微调的话
从头开始训练需要大量的数据计算时间和计算资源。存在模型不收敛参数不够优化准确率低模型泛化能力低容易过拟合等风险。
3.3 什么情况下使用微调
要使用的数据集和预训练模型的数据集相似。如果不太相似比如你用的预训练的参数是自然景物的图片你却要做人脸的识别效果可能就没有那么好了因为人脸的特征和自然景物的特征提取是不同的所以相应的参数训练后也是不同的。自己搭建或者使用的CNN模型正确率太低。数据集相似但数据集数量太少。计算资源太少。
不同数据集下使用微调
数据集1 - 数据量少但数据相似度非常高 - 在这种情况下我们所做的只是修改最后几层或最终的softmax图层的输出类别。数据集2 - 数据量少数据相似度低 - 在这种情况下我们可以冻结预训练模型的初始层比如k层并再次训练剩余的n-k层。由于新数据集的相似度较低因此根据新数据集对较高层进行重新训练具有重要意义。数据集3 - 数据量大数据相似度低 - 在这种情况下由于我们有一个大的数据集我们的神经网络训练将会很有效。但是由于我们的数据与用于训练我们的预训练模型的数据相比有很大不同。使用预训练模型进行的预测不会有效。因此最好根据你的数据从头开始训练神经网络Training from scatch。数据集4 - 数据量大数据相似度高 - 这是理想情况。在这种情况下预训练模型应该是最有效的。使用模型的最好方法是保留模型的体系结构和模型的初始权重。然后我们可以使用在预先训练的模型中的权重来重新训练该模型。
3.4 微调注意事项
通常的做法是截断预先训练好的网络的最后一层softmax层并用与我们自己的问题相关的新的softmax层替换它。例如ImageNet上预先训练好的网络带有1000个类别的softmax图层。如果我们的任务是对10个类别的分类则网络的新softmax层将由10个类别组成而不是1000个类别。然后我们在网络上运行预先训练的权重。确保执行交叉验证以便网络能够很好地推广。使用较小的学习率来训练网络。由于我们预计预先训练的权重相对于随机初始化的权重已经相当不错我们不想过快地扭曲它们太多。通常的做法是使初始学习率比用于从头开始训练Training from scratch的初始学习率小10倍。如果数据集数量过少我们进来只训练最后一层如果数据集数量中等冻结预训练网络的前几层的权重也是一种常见做法。这是因为前几个图层捕捉了与我们的新问题相关的通用特征如曲线和边。我们希望保持这些权重不变。相反我们会让网络专注于学习后续深层中特定于数据集的特征。
4. 迁移学习 迁移学习Transfer Learning是机器学习中的一个名词也可以应用到深度学习领域是指一种学习对另一种学习的影响或习得的经验对完成其它活动的影响。迁移广泛存在于各种知识、技能与社会规范的学习中。 通常情况下迁移学习发生在两个任务之间这两个任务可以是相似的也可以是略有不同。在迁移学习中源任务Source Task是已经训练好的模型的来源目标任务Target Task是我们希望在其中应用迁移学习的新任务。 迁移学习专注于存储已有问题的解决模型并将其利用在其他不同但相关问题上。比如说用来辨识汽车的知识或者是模型也可以被用来提升识别卡车的能力。计算机领域的迁移学习和心理学常常提到的学习迁移在概念上有一定关系但是两个领域在学术上的关系非常有限。
4.1 迁移学习的具象理解
从技术上来说迁移学习只是一种学习的方式一种基于以前学习的基础上继续学习的方式。但现在大家讲的最多的还是基于神经网络基础之上的迁移学习。这里我们以卷积神经网络CNN为例做一个简单的介绍。 在CNN中我们反复的将一张图片的局部区域卷积减少面积并提升通道数。 那么卷积神经网络的中间层里面到底有什么Matthew D. Zeiler和Rob Fergus发表了一篇非常著名的论文阐述了卷积神经网络到底看到了什么 和对卷积层进行简单的成像不同他们尝试把不同的内容输入到训练好的神经网络并观察记录卷积核的激活值。并把造成相同卷积核较大激活的内容分组比较。上面的图片中每个九宫格为同一个卷积核对不同图片的聚类。
从上面图片中可以看到较浅层的卷积层将较为几何抽象的内容归纳到了一起。例如第一层的卷积中基本就是边缘检测。而在第二层的卷积中聚类了相似的几何形状尽管这些几何形状的内容相差甚远。
随着卷积层越来越深所聚类的内容也越来越具体。例如在第五层里几乎每个九宫格里都是相同类型的东西。当我们了解这些基础知识后那么我们有些什么办法可以实现迁移学习
其实有个最简单易行的方式已经摆在我们面前了如果我们把卷积神经网络的前n层保留下来剩下不想要的砍掉怎么样就像我们可以不需要ct能识别狗识别猫但是轮廓的对我们还是很有帮助的。
4.2 迁移学习的思想
迁移学习的主要思想是通过利用源任务上学到的特征表示、模型参数或知识来辅助目标任务的训练过程。这种迁移可以帮助解决以下问题 数据稀缺问题当目标任务的数据量较少时通过迁移学习可以利用源任务上丰富的数据信息来提高对目标任务的建模能力和泛化能力。 高维输入问题当目标任务的输入数据具有高维特征时迁移学习可以借助已经学到的特征表示减少目标任务中的维度灾难问题提高处理效率和性能。 任务相似性问题当源任务和目标任务在特征空间或输出空间上存在一定的相似性时迁移学习可以通过共享模型参数或知识的方式加速目标任务的学习过程提升性能。 领域适应问题当源任务和目标任务的数据分布存在一定的差异时迁移学习可以通过对抗训练、领域自适应等方法实现在不同领域之间的知识传递和迁移。
总结来说迁移学习是一种将已经学到的知识和模型从源任务迁移到目标任务的方法。它在机器学习和深度学习中都具有重要意义可以提高模型的泛化能力、减少训练成本并更好地应对数据稀缺、高维输入和任务相似性等问题。
4.3 如何使用迁移学习
你可以在自己的预测模型问题上使用迁移学习。以下是两个常用的方法
开发模型的方法预训练模型的方法
开发模型的方法
选择源任务。你必须选择一个具有丰富数据的相关的预测建模问题原任务和目标任务的输入数据、输出数据以及从输入数据和输出数据之间的映射中学到的概念之间有某种关系开发源模型。然后你必须为第一个任务开发一个精巧的模型。这个模型一定要比普通的模型更好以保证一些特征学习可以被执行。重用模型。然后适用于源任务的模型可以被作为目标任务的学习起点。这可能将会涉及到全部或者部分使用第一个模型这依赖于所用的建模技术。调整模型。模型可以在目标数据集中的输入-输出对上选择性地进行微调以让它适应目标任务。
预训练模型方法
选择源模型。一个预训练的源模型是从可用模型中挑选出来的。很多研究机构都发布了基于超大数据集的模型这些都可以作为源模型的备选者。重用模型。选择的预训练模型可以作为用于第二个任务的模型的学习起点。这可能涉及到全部或者部分使用与训练模型取决于所用的模型训练技术。调整模型。模型可以在目标数据集中的输入-输出对上选择性地进行微调以让它适应目标任务。
第二种类型的迁移学习在深度学习领域比较常用。
4.4 什么时候使用迁移学习
迁移学习是一种优化是一种节省时间或者得到更好性能的捷径。
通常而言在模型经过开发和测试之前并不能明显地发现使用迁移学习带来的性能提升。
Lisa Torrey 和 Jude Shavlik 在他们关于迁移学习的章节中描述了使用迁移学习的时候可能带来的三种益处
更高的起点。在微调之前源模型的初始性能要比不使用迁移学习来的高。更高的斜率。在训练的过程中源模型提升的速率要比不使用迁移学习来得快。更高的渐进。训练得到的模型的收敛性能要比不使用迁移学习更好。 理想情况下在一个成功的迁移学习应用中你会得到上述这三种益处。
如果你能够发现一个与你的任务有相关性的任务它具备丰富的数据并且你也有资源来为它开发模型那么在你的任务中重用这个模型确实是一个好方法或者更好的情况有一个可用的预训练模型你可以将它作为你自己模型的训练初始点。
在一些问题上你或许没有那么多的数据这时候迁移学习可以让你开发出相对不使用迁移学习而言具有更高性能的模型。
对源数据和源模型的选择是一个开放问题可能需要领域专家或者实际开发经验。